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ABSTRACT

Brain decoding allows the read-out of stimulus and men-

tal content from neural activity, and has been utilised

in various neural-driven classification tasks related to the

music information retrieval community. However, even

the relatively simple task of instrument classification has

only been demonstrated for single- or few-note stimuli

when decoding from neural data recorded using functional

magnetic resonance imaging (fMRI). Here, we show that

drums, instrumentals, vocals, and mixed sources of nat-

uralistic musical stimuli can be decoded from single-trial

spatial patterns of auditory cortex activation as recorded

using fMRI. Comparing classification based on convolu-

tional neural networks (CNN), random forests (RF), and

support vector machines (SVM) further revealed similar

neural encoding of vocals and mixed sources, despite vo-

cals being most easily identifiable. These results highlight

the prominence of vocal information during music percep-

tion, and illustrate the potential of using neural represen-

tations towards evaluating music source separation perfor-

mance and informing future algorithm design.

1. INTRODUCTION

The goal of brain decoding is to infer mental states and

perceptual information from neural activity [1, 2]. Com-

mon neuroimaging techniques such as functional mag-

netic resonance imaging (fMRI) and electroencephalogra-

phy (EEG) allow data acquisition in a non-invasive man-

ner, which has resulted in rapid developments in brain-

computer interfaces (BCI) [3, 4].

Although fMRI- and EEG-based models both make use

of neural activity for decoding, the form of information

retrieved is substantially different. That is because fMRI

offers (sub-)millimetre spatial resolution at the cost of low
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Figure 1. We compared the decoding performance of

convolutional neural networks (CNN), random forests

(RF), and support vector machines (SVM) in classifying

drums, instrumentals, vocals, and mixed naturalistic mu-

sical sources based on human auditory cortex activation

(highlighted in green) as recorded using fMRI.

temporal resolution, whilst EEG provides a millisecond-

level temporal resolution at the expense of poor spatial

resolution [2, 5]. Consequently, fMRI-based decoders typ-

ically rely on spatial representations of neural activation as

features, whilst EEG-based decoders exploit the temporal

dynamics of neural activity.

In the context of music information retrieval (MIR),

both fMRI- and EEG-based decoders have been employed

for a variety of classification/estimation tasks, such as

genre [6–9], pitch [6, 10–12], rhythm [13, 14], musical

emotion classification [15–21], song identification [22–

25], music composition [26], beat and note onset detec-

tion [27,28], and acoustic feature extraction [29], as well as

reconstruction from heard and imagined melodies [30–35].

However, a problem that has remained under-studied is

the decoding of different instruments within a song based

on brain activity. This is despite its intimate relation to the

standard MIR task of music source separation, which seeks

to decompose a musical sound mixture into a linear sum of

instrumental sources [36, 37]. Although music and speech

source separation share the same goals, the key difference

is that sound sources from multiple musical instruments

are more correlated in music than in speech [36].

The most relevant literature on neural-driven music

source separation is the work by Cantisani et al. [38, 39].

Their initial work showed that EEG can be used to decode

listeners’ attention deployment to a particular instrument
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from naturalistic polyphonic music mixtures [38]. The

approach was to first record listeners’ EEG as they were

presented with solo instrumental sources. A temporal re-

sponse function was then trained to reconstruct the solo

instrumental sources from EEG. This response function

was later applied to the EEG signal when subjects listened

to the polyphonic mixtures. The attended instrument was

identified as the one that showed the highest correlation

with the reconstructed source. In their subsequent work

[39], they showed that the reconstructed sources from their

EEG attention decoding model can be used as contrastive

priors to inform a non-negative matrix factorisation-based

source separation model.

On the other hand, relevant work based on fMRI data

seems to be lacking. While existing studies have identi-

fied the role of the auditory cortex in processing timbre

[40, 41] via correlational approaches, even the relatively

simple task of decoding musical instrument category has

only been restricted to single- or few-note stimuli [19, 42].

In this paper we address this gap by showing that dis-

tinct musical sources, namely drums, instrumentals, and

vocals from naturalistic musical stimuli, as well as their

mixtures, can be decoded from spatial representations of

neural activation recorded using fMRI on the single-trial

level. We report that decoding performance was the high-

est when detecting the presence of vocal information in the

auditory stimulus, and we explain our model decisions in

terms of patterns of neural activations. Importantly, un-

like most existing decoding studies which have relied on a

single classification algorithm, we additionally compared

performance across three decoders, convolutional neural

networks (CNN), random forests (RF), and support vec-

tor machines (SVM), to enhance the generalisability of our

findings. In the last section of this paper, we also discuss

how brain activity could be used in the future to evaluate

music source separation and inform algorithm design.

2. METHODS

2.1 Experimental stimuli

Experimental stimuli consisted of 15-second musical audio

excerpts derived from the beginning of the chorus section

of 24 unreleased pop and rock songs within an in-house

music dataset created by professional musicians.

Four versions of each song—drums, instrumentals, vo-

cals, and mixed—were compiled, resulting in a total of

96 stimuli. The versions were produced by first separat-

ing the original song into bass, drums, other, and

vocals using a state-of-the-art music source separation

model, Demucs-v4 [43]. Due to the frequency response of

MRI-compatible noise-isolating earphones (Sensimetrics

S15), bass and other were linearly combined to form

an instrumentals version. A 100-ms fade-out was then ap-

plied to the drums, instrumentals, and vocals versions, fol-

lowed by loudness normalisation to the EBR U 128 stan-

dard. Finally, the normalised drums, instrumentals, and

vocals versions of each song were linearly combined to

form the mixed version, which was also normalised for

loudness. We chose to use the mixed version rather than

the original song to ensure that decoding was not biased

by differences in loudness from the underlying versions.

We made sure that each song actually included drums, vo-

cals, and other instruments before source separation, and

we checked our resulting stimuli after source separation to

ensure that they were free from audible artefacts and sep-

aration errors, and that they did not contain silences at the

start and end that would shorten the stimuli.

2.2 Data acquisition

Data were collected from 24 healthy, normal-hearing

adults aged between 19-34 with their written informed

consent. The 96 music stimuli were presented over

eight runs whilst functional gradient echo planar images

(TR/TA/TE = 2/2/0.025 s, voxel size = 3×3×3 mm3, 33

slices, flip angle = 77◦, 188 volumes per run) were ac-

quired using a Siemens Prisma 3T MRI scanner. Each run

lasted approximately 6 minutes, and was separated by a

short break of around one minute. Stimulus presentation

was counter-balanced across runs, with the constraint that

each run contained three samples of the four versions, all

stimuli came from different songs, and that each song (re-

gardless of version) appeared only once every other run.

Stimulus presentation within a run was randomised. To

maintain attention, subjects were also asked to rate their

preference on a 1-9 scale within a 4-second time window

using a button box after each stimulus presentation. Our

study was approved by the Ethics Committee at RIKEN.

2.3 fMRI data preprocessing

Functional MRI data for each subject were preprocessed

using fMRIprep [44]. Functional images were first cor-

rected for slice-timing differences, motion artefacts, and

susceptibility distortions, then co-registered to subjects’

anatomical image, and then normalised to standard MNI-

space using the ICBM 152 Nonlinear Asymmetrical tem-

plate. Next, for each subject, we fitted a general linear

model in each voxel to estimate the blood oxygen level-

dependent (BOLD) response on the single-trial level using

SPM [45] following a ‘least-squared all’ approach [46]:

each stimulus was modelled as a separate regressor in the

design matrix, and a parametric modulator that varied by

subjects’ stimulus rating was also added to control for dif-

ferences in preference. Another regressor was included

to account for variance during the rating period. These

regressors were modelled as boxcar functions and con-

volved with the canonical haemodynamic response func-

tion (HRF). Six motion, one cardiac, and one respiratory

regressors were further added to the design matrix to con-

trol for motion- and physiology-induced artefacts. Model

parameters were estimated using restricted maximum like-

lihood, and the resulting parameter estimates at each voxel

provided a spatial representation (i.e., beta maps) of neural

activations for each stimulus separately, which we used for

subsequent decoding.

As we were interested in stimulus differences in the

neural-perceptual level, we considered voxels in the hu-
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Figure 2. Architecture of our CNN-based decoder.

man auditory cortex (see Figure 1) as decoding features.

These were obtained by applying a mask to the bilateral

early-auditory and auditory-associative

regions in the HCP-MM1 brain atlas [47,48], and then flat-

tened into a 1D-vector using nilearn [49].

2.4 Decoding analyses

We performed two decoding analyses. The first was a four-

way classification task, whose goal was to classify which

of the four versions a stimulus belonged to based on sub-

jects’ brain activation as summarised by its beta map. The

second was a binary recognition task, whose goal was to

detect the presence of drums, instrumentals, or vocals in

the stimulus from brain activation. As an example, for

drum-recognition, drums and mixed versions would be as-

signed a positive label, whilst instrumentals and vocals

versions would be assigned a negative label.

We also examined whether decoding performance de-

pended on neural information encoded in the left, right, or

both auditory cortices. This was motivated by neurosci-

entific findings suggesting a right-lateralised hemispheric

dominance to musical stimuli [50], and that the left audi-

tory cortex may be more sensitive to rapid temporal fea-

tures in an auditory stimulus whilst the right may be more

sensitive towards spectral features [51].

To enhance the generalisability of our findings, we per-

formed leave-one-subject-out cross-validation, where each

decoder was trained on data from 23 subjects and tested

on 1 remaining subject. Note that brain decoding between

subjects is generally harder than decoding within subjects,

because the decoder must additionally overcome individ-

ual differences in structural and functional organisation of

the brain when predicting on an unseen subject [52].

2.5 Implementation

We trained three types of classifiers—convolutional neural

networks (CNN), random forests (RF), and support vec-

tor machines (SVM)—for our two decoding tasks. While

classical approaches such as SVMs and RFs remain pop-

ular [53], CNNs have also been recently used to decode

visual objects [54], vocal emotions [55], and musical pitch

[10] from fMRI data. We implemented CNN decoders on

TensorFlow2, whilst RF and SVM were implemented on

scikit-learn 1 .

Training data were first put through a variance thresh-

old to remove features that gave identical outputs (e.g., at

1 For data, code, and Supplementary Information, please refer to
https://github.com/vkmcheung/neuromusic-decoding/

the boundary of the brain), and then scaled using a robust

scaler, before decoders were fitted.

Our CNN decoders (see Figure 2) were inspired by

ConvNeXt [56], which is a family of purely convolu-

tional neural networks that recently achieved state-of-the-

art performance in image classification. Input features

first passed through a 1D-convolution layer (96 units, ker-

nel size = 4), and a ConvNeXt-like residual block. This

block comprised a 1D-convolution layer (96 units, kernel

size = 7), followed by layer normalisation, 1D-convolution

(384 units, kernel size = 1), GELU activation, another 1D-

convolution (96 units, kernel size = 1), and a residual con-

nection layer followed by ReLU activation. Outputs of

the residual block then passed through three dense layers

(1024, 512, and 256 units, respectively), a flattening layer,

and finally a dense layer with softmax output. All convo-

lution layers had a stride length of 1 (except for the first,

which had a length of 4) and same-padding. Each model

was trained to minimise categorical entropy loss for 200

epochs, and early-stopped if validation performance did

not improve after 25 epochs (with best weights restored).

Data from two random subjects (∼10%) in the training set

were held-out for validation, and we selected a batch size

of 512, and an AdamW optimiser [57] with learning rate =

0.001 and weight decay = 0.0001 for training.

RF decoders were trained with bootstrapping using 100

trees in the forest, at least 1 sample per leaf, and 2 samples

per split. Quality of split was assessed with Gini impurity.

SVM decoders were trained using regularisation param-

eter of 1 with squared-L2 penalty and a linear kernel for a

maximum of 10,000 iterations.

3. RESULTS AND DISCUSSION

3.1 Four-way classification

Table 1 and Figure 3 show the leave-one-subject-out cross-

validation performance of CNN, RF, and SVM decoders in

classifying whether a stimulus belonged to drums, instru-

mentals, vocals, or mixed versions of a song, given audi-

tory cortex activation. To test the statistical significance

of our results (see Table 2), we fitted linear mixed models

with the interaction between classifier and hemisphere (and

lower order terms) as fixed effects and a maximal random

effects structure with subject as a grouping factor.

All classifiers showed significantly above-chance per-

formance (all p < 2.2×10−16, see Supplementary Infor-

mation 1 ) in decoding accuracy and Area Under the Re-

ceiver Operating Characteristic Curve (ROC AUC), sug-

gesting that despite the slow temporal resolution of fMRI,

correlated sources of the same song can be decoded and

classified from spatial representations of brain activation.

For all classifiers, accuracy and ROC AUC were highest

when decoding from the bilateral auditory cortex, followed

by the right and left hemispheres. Resolving significant in-

teraction effects between classifier and hemisphere for ac-

curacy and ROC AUC furthermore revealed that accuracy

was significantly worse when decoding from the left com-

pared to the right and bilateral auditory cortices for CNN,
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CNN RF SVM
acc auc acc auc acc auc

Four-way classification

l AC .506 .799 .523 .802 .524 .810
r AC .588 .858 .536 .817 .563 .843

l+r AC .604 .863 .554 .824 .597 .863
l+r PV .301 .560 .319 .554 .253 .510
l+r SM .304 .547 .332 .550 .276 .554

Drums recognition

l AC .595 .638 .603 .637 .550 .559
r AC .622 .677 .586 .638 .559 .591

l+r AC .630 .683 .599 .655 .553 .601
l+r PV .507 .505 .528 .533 .526 .531
l+r SM .517 .544 .530 .545 .490 .500
Instrumentals recognition

l AC .656 .726 .638 .688 .615 .679
r AC .642 .723 .666 .727 .627 .687

l+r AC .680 .762 .657 .712 .652 .703
l+r PV .577 .593 .585 .611 .495 .509
l+r SM .558 .576 .580 .600 .517 .553
Vocals recognition

l AC .794 .891 .799 .913 .746 .847
r AC .816 .926 .841 .937 .836 .936

l+r AC .839 .946 .829 .936 .843 .950
l+r PV .527 .527 .525 .541 .495 .502
l+r SM .516 .544 .563 .581 .516 .552

Table 1. Mean brain decoding performance with leave-

one-subject-out cross-validation. acc = accuracy; auc =

ROC AUC; l/r/l+r = left/right/bilateral; AC = auditory, PV

= primary visual, SM = somatosensory-motor cortices.

Figure 3. Box plots showing four-way classification per-

formance when decoding from voxels in the left and/or

right auditory cortex using CNN, RF, and SVM. Light cir-

cles indicate test performance on each held-out subject.

Filled circles indicate mean. Dashed lines indicate chance.

and compared to the right for SVM. Likewise, ROC AUC

was significantly lower when decoding from the left com-

pared to the bilateral auditory cortex for all classifiers, and

compared to the right for CNN and SVM. Although these

results corroborate previous findings (e.g., [50]) that sup-

port a dominant role of the right auditory cortex in pro-

cessing musical stimuli, they nevertheless show that both

auditory cortices were engaged and provided useful infor-

mation for decoding.

Four-way classification χ
2 df p

Accuracy

hemisphere 37.3 2 8.08×10−9 ***
classifier 6.81 2 .0331 *
hemisphere:classifier 14.6 4 .00551 **

ROC AUC

hemisphere 55.3 2 9.58×10−13 ***
classifier 11.8 2 .00278 **
hemisphere:classifier 14.3 4 .00625 **

Recognition task χ
2 df p

Accuracy

hemisphere 3.30 2 .192
classifier 14.5 2 .000720 ***

task 59.9 2 9.78×10−14 ***
hemisphere:classifier 3.60 4 .463
task:classifier 9.76 4 .0447 *
hemisphere:task 2.90 4 .574
hemisphere:classifier:task 11.3 8 .184

ROC AUC

hemisphere 4.89 2 .0866
classifier 13.6 2 .00114 **

task 94.2 2 < 2.2×10−16 ***
hemisphere:classifier 2.07 4 .722
task:classifier 10.9 4 .0275 *
hemisphere:task 2.68 4 .612
hemisphere:classifier:task 9.54 8 .299

Table 2. ANOVA table evaluating the statistical signifi-

cance of hemisphere and classifier in four-way classifica-

tion and recognition task performance. * = p < .05; ** = p

< .01; *** = p < .001.

Confusion matrices in Figure 4(A) provide further in-

sight on decoding performance. We notice that across the

three decoders trained on both hemispheres, recall was the

highest for drums and the lowest for mixed. The high re-

call for drums could be because they were the most tem-

porally regular and had limited pitch possibilities. Further-

more, mixed and vocals, as well as drums and instrumen-

tals, were often misclassified as the other. These suggest

a similar neural representation between mixed and vocals,

as well as drums and instrumentals. Whether this pairing

is contingent on the stimulus set, the part of a song used

(here, our stimulus excerpts were taken from the begin-

ning of the chorus section), and the experimental design

remains to be verified in future studies.

3.2 Neural representations

To explain the impact of each voxel towards classification,

we turned to SHapley Additive exPlanations (SHAP) [58].

SHAP decomposes a model prediction into the additive

contribution of each feature from the mean using game the-

ory. Figure 4(B) shows the mean-averaged contribution of

voxels in the bilateral auditory cortex towards classifying a

stimulus as belonging to the four versions in Subject 4 us-

ing a CNN. We notice that the pattern of contributions were

quite similar for mixed and vocals, which could explain the

misclassification of the two labels observed above. Fur-

thermore, there were substantial contributions from both
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Figure 4. (A) Confusion matrix (normalised along rows) for each decoder when trained on the bilateral auditory cortices,

pooled across all subjects. Notice that drums recall was highest, and a consistent misclassification between mixed and

vocals, as well as drums and instrumentals. (B) Mean additive contribution of each voxel in the bilateral auditory cortex

towards classifying a given label for one subject using a CNN decoder derived using SHAP [58].

auditory cortices, again indicating a bilateral engagement

during music processing.

3.3 Recognition task

We next tested whether decoding performance in recognis-

ing the presence of drums, vocals, or instrumentals varied

from the left and/or right auditory cortex. Results from

leave-one-subject-out cross-validation are summarised in

Figure 5 and Tables 1 and 2.

Resolving significant main effect of tasks for accuracy

and ROC AUC revealed substantially higher decoding per-

formance across CNN, RF, and SVM in recognising vocals

compared to drums and instrumentals (see Supplementary

Information 1 ). That the presence of vocal information

was most robustly encoded from neural activation patterns

is very interesting, as it suggests that listeners show an en-

hanced sensitivity towards perceiving human voice in mu-

sic. This finding is in line with the view that singing vo-

cals play a prominent and powerful role in communicating

and expressing meaning and emotion during music listen-

ing [59, 60]. We speculate that the presence of vocal in-

formation might have additionally engaged neural popula-

tions involved in language processing, which consequently

increased its dissimilarity amongst other labels.

Significant main effects of classifier for accuracy and

ROC AUC also indicated superior performance of CNN

and RF over SVM when averaged across recognition

tasks. However, significant task-by-classifier interactions

for both measures suggest that performance varied accord-

ing to recognition task. Resolving the interaction revealed

significantly lower accuracy and ROC AUC for SVM com-

pared to CNN and RF in drums recognition. Significantly

higher ROC AUC was also observed for CNN compared to

SVM in recognising instrumentals. Nevertheless, we were

not able to detect any meaningful differences in laterality

across tasks or classifiers.

3.4 Feature-encoding specificity

Thus far, we relied on neural activations in the auditory

cortex as input features for our decoding models. To as-

sess the specificity of information encoding, we repeated

the above analyses in two other sensory processing brain

regions, namely the bilateral primary-visual, and the

somatosensory-and-motor regions as derived from

the HCP-MM1 brain atlas [47,48]. As before, we assessed

the statistical significance of decoding performance using

linear mixed models. However, rather than comparing the

effects of hemisphere within the auditory cortex, we now

compare performance across the bilateral auditory, primary

visual, as well as somatosensory-motor cortices.

In the four-way classification task, we observe in Table

1 and the Supplementary Information 1 that decoding from

the bilateral auditory cortex resulted in significantly higher

accuracy and ROC AUC compared to the two other sensory

cortices across all classifiers (all p < 2.2×10−16).

Interestingly, decoding accuracy and ROC AUC were

also significantly above chance when CNNs and RFs were

trained using features from the visual and somatosensory-

motor regions (with no significant differences between

these two regions). Furthermore, resolving signifi-
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Figure 5. Box plots comparing performance in recognising the presence of drums, instrumentals, or vocals in a musical

stimulus using left and/or right auditory cortex activation as decoding features. Significantly higher decoding performance

was detected in the vocals recognition. Dashed lines indicate chance performance.

cant cortex-by-classifier interactions showed significantly

lower accuracy and ROC AUC when decoding from the

primary visual cortex using SVM compared to CNN and

RF, and from the auditory cortex using RF compared to

CNN, as well as lower accuracy when decoding from the

somatosensory-motor cortex using SVM compared to RF.

A similar picture could be seen in recognition per-

formance. Significant main effects of cortex for recog-

nition accuracy and ROC AUC indicate superior perfor-

mance when decoding from the auditory compared to

visual or somatosensory-motor regions. Resolving sig-

nificant cortex-by-task interactions further revealed that

the significantly higher performance in recognising vocals

compared to drums or instrumentals was specific to the au-

ditory cortex. By contrast, accuracy and ROC AUC for

instrumentals were significantly higher than drums in the

auditory and somatosensory-motor areas, as well as in the

primary visual cortex (ROC AUC only).

Engagement of the primary visual cortex during music

has been suggested to be related to mental imagery [61,62],

which is thought to be an important way through which

music evokes emotions [63]. Likewise, the somatosensory

cortex has been said to encode the emotional percept or

feeling states associated with music [15], whilst auditory-

motor interactions during music perception is thought to be

related to the integration and updating of hierarchical pre-

dictions of the musical beat [64, 65]. Combined with the

substantially higher performance observed when decoding

from the auditory cortex, these suggest that while musical

sources could be decoded from visual and somatosensory-

motor regions, the information encoded is unlikely to be

related to the auditory content itself. Rather, such repre-

sentations might encode affective or metrical information

from associated cognitive processes that arise when per-

ceiving the four different musical sources.

4. CONCLUSION AND FUTURE PERSPECTIVES

In this paper, we demonstrated that drums, instrumentals,

vocals, and mixed sources of naturalistic music can be

decoded from human auditory cortex fMRI data on the

single-trial, between-subject level. While decoding per-

formance was the highest for CNN, performance across

all classifiers—CNN, RF, and SVM—were above chance

and suggested similar neural representations for vocals and

mixed sources. An especially high performance in vocals

recognition across all classifiers further pointed towards an

enhanced perceptual sensitivity towards vocal information

during music listening. Taken together, our results show

that despite the low temporal resolution of fMRI, the high

spatial resolution it offers could still provide relevant in-

formation for decoding in neural-driven MIR tasks.

Although our specificity analyses highlighted the au-

ditory cortex in encoding stimulus-relevant information

compared to other sensory areas, the perception of dif-

ferent musical sources is a hierarchical process that en-

gages higher-order brain regions in the prefrontal cortex

via dorsal and ventral pathways [66, 67]. Future work

could examine differences in representations along these

two pathways to shed light on neural mechanisms involved

in auditory-object processing.

In the context of music source separation, one future

possibility is to use neural data for evaluation. While cur-

rent subjective evaluation of music source separation algo-

rithms typically rely on explicit ratings such as MUSHRA

or mean opinion scores, ratings are known to be prone to

response biases [68–70] and might consequently fail to ad-

equately reflect subjects’ perception. This could be over-

come by directly evaluating performance on the neural-

perceptual level. Future work could, for example, com-

pare the neural representations of source-separated stimuli

from different algorithms or hyperparameters. Separation

quality could be determined by identifying the algorithm

that maximises dissimilarity in neural activation across the

different sources. Another possibility is to assess sensitiv-

ity to each instrument by examining neural activation in

response to different mixing proportions. This would pro-

vide perceptual priors that could be used to constrain the

parameter space in future music source separation algo-

rithms. While these prospects may seem too challenging

at this time, we envision that our work will help pave the

way in that direction.
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